Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 16(11): e0258263, 2021.
Article in English | MEDLINE | ID: covidwho-1700786

ABSTRACT

Clinical and surveillance testing for the SARS-CoV-2 virus relies overwhelmingly on RT-qPCR-based diagnostics, yet several popular assays require 2-3 separate reactions or rely on detection of a single viral target, which adds significant time, cost, and risk of false-negative results. Furthermore, multiplexed RT-qPCR tests that detect at least two SARS-CoV-2 genes in a single reaction are typically not affordable for large scale clinical surveillance or adaptable to multiple PCR machines and plate layouts. We developed a RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (LuNER) to address these shortcomings and meet the testing demands of a university campus and the local community. This cost-effective test is compatible with BioRad or Applied Biosystems qPCR machines, in 96 and 384-well formats, with or without sample pooling, and has a detection sensitivity suitable for both clinical reporting and wastewater surveillance efforts.


Subject(s)
COVID-19/virology , Ribonuclease P/genetics , SARS-CoV-2/genetics , Wastewater/virology , DNA Primers/genetics , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods , Wastewater-Based Epidemiological Monitoring
2.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: covidwho-1066793

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has emerged as the cause of a global pandemic. We used RNA sequencing to analyze 286 nasopharyngeal (NP) swab and 53 whole-blood (WB) samples from 333 patients with COVID-19 and controls. Overall, a muted immune response was observed in COVID-19 relative to other infections (influenza, other seasonal coronaviruses, and bacterial sepsis), with paradoxical down-regulation of several key differentially expressed genes. Hospitalized patients and outpatients exhibited up-regulation of interferon-associated pathways, although heightened and more robust inflammatory responses were observed in hospitalized patients with more clinically severe illness. Two-layer machine learning-based host classifiers consisting of complete (>1000 genes), medium (<100), and small (<20) gene biomarker panels identified COVID-19 disease with 85.1-86.5% accuracy when benchmarked using an independent test set. SARS-CoV-2 infection has a distinct biosignature that differs between NP swabs and WB and can be leveraged for COVID-19 diagnosis.


Subject(s)
COVID-19/diagnosis , Nasopharynx/virology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Area Under Curve , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Gene Library , Humans , Machine Learning , RNA, Viral/blood , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Transcriptome
3.
Sci Rep ; 11(1): 780, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026832

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus motivates diverse diagnostic approaches due to the novel causative pathogen, incompletely understood clinical sequelae, and limited availability of testing resources. Given the variability in viral load across and within patients, absolute viral load quantification directly from crude lysate is important for diagnosis and surveillance. Here, we investigate the use of digital droplet PCR (ddPCR) for SARS-CoV-2 viral load measurement directly from crude lysate without nucleic acid purification. We demonstrate ddPCR accurately quantifies SARS-CoV-2 standards from purified RNA and multiple sample matrices, including commonly utilized universal transport medium (UTM). In addition, we find ddPCR functions robustly at low input viral copy numbers on nasopharyngeal swab specimens stored in UTM without upfront RNA extraction. We also show ddPCR, but not qPCR, from crude lysate shows high concordance with viral load measurements from purified RNA. Our data suggest ddPCR offers advantages to qPCR for SARS-CoV-2 detection with higher sensitivity and robustness when using crude lysate rather than purified RNA as input. More broadly, digital droplet assays provide a potential method for nucleic acid measurement and infectious disease diagnosis with limited sample processing, underscoring the utility of such techniques in laboratory medicine.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , Viral Load , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/standards , Humans , Nasal Mucosa/virology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Sensitivity and Specificity
4.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-638997

ABSTRACT

Analytical sensitivity for SARS-CoV-2 detection is a key performance metric for the evaluation of viral detection assays. We determined analytical limits of detection for seven SARS-CoV-2 assays using serial dilutions of pooled patient material quantified with droplet digital PCR. Limits of detection ranged from ≤10 to 74 copies/ml for commercial high-throughput laboratory analyzers (Roche Cobas, Abbott m2000, and Hologic Panther Fusion) and 167 to 511 copies/ml for sample-to-answer (DiaSorin Simplexa, GenMark ePlex) and point-of-care instruments (Abbott ID NOW). The CDC assay yielded limits of detection ranging from 85 to 499 copies/ml, depending on the extraction method and thermocycler used. These results can help to inform the assay choice for testing approaches to manage the current COVID-19 outbreak.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Humans , Limit of Detection , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2
5.
Science ; 369(6503): 582-587, 2020 07 31.
Article in English | MEDLINE | ID: covidwho-591377

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, with >365,000 cases in California as of 17 July 2020. We investigated the genomic epidemiology of SARS-CoV-2 in Northern California from late January to mid-March 2020, using samples from 36 patients spanning nine counties and the Grand Princess cruise ship. Phylogenetic analyses revealed the cryptic introduction of at least seven different SARS-CoV-2 lineages into California, including epidemic WA1 strains associated with Washington state, with lack of a predominant lineage and limited transmission among communities. Lineages associated with outbreak clusters in two counties were defined by a single base substitution in the viral genome. These findings support contact tracing, social distancing, and travel restrictions to contain the spread of SARS-CoV-2 in California and other states.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Genome, Viral , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , California/epidemiology , Coronavirus Infections/transmission , Epidemiological Monitoring , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Sequence Alignment , Ships , Travel , Washington
6.
Nat Biotechnol ; 38(7): 870-874, 2020 07.
Article in English | MEDLINE | ID: covidwho-74244

ABSTRACT

An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections. Our CRISPR-based DETECTR assay provides a visual and faster alternative to the US Centers for Disease Control and Prevention SARS-CoV-2 real-time RT-PCR assay, with 95% positive predictive agreement and 100% negative predictive agreement.


Subject(s)
Betacoronavirus/isolation & purification , CRISPR-Cas Systems , Clinical Laboratory Techniques , Nucleic Acid Amplification Techniques/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Guide, Kinetoplastida/genetics , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL